资源类型

期刊论文 164

年份

2023 4

2022 15

2021 4

2020 6

2019 10

2018 8

2017 16

2016 6

2015 11

2014 16

2013 8

2012 8

2011 10

2010 6

2009 8

2008 5

2007 8

2006 6

2005 2

2004 2

展开 ︾

关键词

热释放速率 3

火灾 2

细水雾 2

1)模型 1

BNCT医院中子照射器 1

CO2 捕集 1

COVID-19 1

GDP 1

GDP年增长率 1

GM(1 1

HCG日 1

IEEE 802-16e 1

IVF/ICSI 新鲜周期 1

PVC火 1

QoS 1

TBM 1

TORCH 1

XeF(C-A)激光 1

Z干扰信道;非正则信号;和速率;帕累托边界;协方差;伪协方差 1

展开 ︾

检索范围:

排序: 展示方式:

REGIONAL ASSESSMENT OF SOIL NITROGEN MINERALIZATION IN DIVERSE CROPLAND OF A REPRESENTATIVE INTENSIVE AGRICULTURAL AREA

《农业科学与工程前沿(英文)》 2023年 第10卷 第4期   页码 530-540 doi: 10.15302/J-FASE-2023515

摘要:

Soil nitrogen mineralization (Nmin) is a key process that converts organic N into mineral N that controls soil N availability to plants. However, regional assessments of soil Nmin in cropland and its affecting factors are lacking, especially in relation to variation in elevation. In this study, a 4-week incubation experiment was implemented to measure net soil Nmin rate, gross nitrification (Nit) rate and corresponding soil abiotic properties in five field soils (A–C, maize; D, flue-cured tobacco; and E, vegetables; with elevation decreasing from A to E) from different altitudes in a typical intensive agricultural area in Dali City, Yunnan Province, China. The results showed that soil Nmin rate ranged from 0.10 to 0.17 mg·kg−1·d−1 N, with the highest value observed in field E, followed by fields D, C, B, and A, which indicated that soil Nmin and Nit rates varied between fields, decreasing with elevation. The soil Nit rate ranged from 434.2 to 827.1 µg·kg−1·h−1 N, with the highest value determined in field D, followed by those in fields E, C, B, and A. The rates of soil Nmin and Nit were positively correlated with several key soil parameters, including total soil N, dissolved organic carbon and dissolved inorganic N across all fields, which indicated that soil variables regulated soil Nmin and Nit in cropland fields. In addition, a strong positive relationship was observed between soil Nmin and Nit. These findings provide a greater understanding of the response of soil Nmin among cropland fields related to spatial variation. It is suggested that the soil Nmin from cropland should be considered in the evaluation of the N transformations at the regional scale.

关键词: cropland     gross nitrification rate     regulatory factors     soil nitrogen mineralization     spatial variation    

Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation

Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 528-533 doi: 10.1007/s11783-014-0641-5

摘要: A ratio control strategy has been used to demonstrate the feasibility of this automatic control procedure for the achievement of stable full and partial nitritation. The control strategy assured constant ratio between the dissolved oxygen (DO) and the total ammonia nitrogen (TAN) concentrations in the bulk liquid of aerobic granular sludge reactors operating in continuous mode. Three different set-ups with different reactor capacities were used (3, 110, and 150 L). High strength synthetic wastewaters and reject water were tested with similar performance. Achieved nitrogen loading rates ranged between 0.4 and 6.1 kgN·m ·d , at temperatures between 20°C and 30°C. Granular sludge and nitritation were stable in the long term continuous operation of the reactors. Suitable stable effluent for Anammox has been obtained using the desired TAN setpoint (i.e. 50% of influent ammonium oxidation). An existing biofilm model developed incorporating the implemented control loops and validated in a previous publication was used to investigate the effects of the ammonium concentration of the influent and the biofilm density on the achievement of full nitritation. The model demonstrated how sludge recirculation events led to a stable and significant increase of the biomass concentration in the reactor, which in turn resulted in the achievement of high nitrogen loading rates, due to the action of the control strategy. The model predicted an enhancement of stable full nitritation at higher ammonium concentrations in the influent. Poor influence of the biofilm density in the achievement of full nitritation was predicted with the model.

关键词: partial nitrification     reject water     high strength ammonium wastewater     closed-loop control    

Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate

Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1324-z

摘要: Abstract • PN-A was start-up under low inoculation amount and a higher NRR was achieved. • PN-anammox system was successfully restored by aggressive sludge discharge. • Increase in granular sludge was the important factor to rapid recovery. • Enrichment of AOB and AnAOB in granular sludge favors the stable operation. Partial nitritation (PN)-anaerobic ammonium oxidation (anammox) is a promising pathway for the biological treatment of wastewater. However, the destruction of the system caused by excessive accumulation of nitrate in long-term operation remains a challenge. In this study, PN-anammox was initialized with low inoculation quantity in an air-lift reactor. The nitrogen removal rate of 0.71 kgN/(m3·d) was obtained, which was far higher than the seed sludge (0.3 kgN/(m3·d)). Thereafter, excess nitrate build-up was observed under low-loading conditions, and recovery strategies for the PN-anammox system were investigated. Experimental results suggest that increasing the nitrogen loading rate as well as the concentration of free ammonium failed to effectively suppress the nitrite oxidation bacteria (NOB) after the PN-anammox system was disrupted. Afterwards, effluent back-flow was added into the reactor to control the up-flow velocity. As a result, an aggressive discharge of sludge that promoted the synergetic growth of functional bacteria was achieved, leading to the successful restoration of the PN-anammox system. The partial nitritation and anammox activity were in balance, and an increase in nitrogen removal rate up to 1.07 kgN/(m3·d) was obtained with a nitrogen removal efficiency of 82.4% after recovery. Besides, the proportion of granular sludge (over 200 mm) increased from 33.67% to 82.82%. Ammonium oxidation bacteria (AOB) along with anammox bacteria were enriched in the granular sludge during the recovery period, which was crucial for the recovery and stable operation of the PN-anammox system.

关键词: PN-anammox     Granular sludge     Excess nitrate build-up     Recovery strategy for partial nitrification     Aggressive discharge of sludge    

Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients

Alberto MANNUCCI,Giulio MUNZ,Gualtiero MORI,Claudio LUBELLO,Jan A. OLESZKIEWICZ

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 988-994 doi: 10.1007/s11783-014-0751-0

摘要: The aim of this work is to identify the range of applicability of Arrhenius type temperature dependence for Ammonia Oxidizing Bacteria (AOB) subjected to temperature time gradients through continuous titrimetric tests. An innovative online differential titrimetric technique was used to continuously monitor the maximum biologic ammonia oxidation rate of the biomass selected in a pilot scale membrane bioreactor, as a function of temperature time gradients. The monitoring technique is based on the measurement of alkalinity and hydrogen peroxide consumption rates in two parallel reactors operated in non-limiting substrate conditions for AOB; both reactors were continuously fed with mixed liquor and in one of them AOB were inhibited with allylthiourea. The effects of temperature decrease rates in the range 1 to 4°C·h were evaluated by controlling the titrimetric reactor in the temperature range 10°C–20°C. The dependence of growth kinetics on temperature time gradients and the range of applicability of Arrhenius model for temperature dependency of AOB growth kinetics were assessed. The Arrhenius model was found to be accurate only with temperature gradients lower than 2°C·h . The estimated Arrhenius coefficients ( ) were shown to increase from 1.07 to 1.6 when the temperature decrease rate reached 4°C·h .

关键词: nitrification rate     temperature effect     continuous titrimetric tests     time-gradient temperature variations     Ammonia Oxidizing Bacteria (AOB)    

Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration

ZHANG Peng, ZHOU Qi

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 49-52 doi: 10.1007/s11783-007-0009-1

摘要: Simultaneous nitrification and denitrification (SND), which is more economical compared with the traditional method for nitrogen removal, is studied in this paper. In order to find the suitable conditions of this process, a mixed flow activated sludge system under low oxygen concentration is investigated, and some key control parameters are examined for nitrogen removal from synthetic wastewater. The results show that SND is accessible when oxygen concentration is 0.3 0.8 mg/L. The nitrogen removal rate can be obtained up to 66.7% with solids retention time (SRT) of 45 d, C/N value of 10, and F/M ratio of 0.1 g COD/(g MLSS·d). Theoretical analysis indicates that SND is a physical phenomenon and governed by oxygen diffusion in flocs.

关键词: synthetic wastewater     accessible     Simultaneous nitrification     MLSS·d     diffusion    

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1668-2

摘要:

● Efficient carbon methanation and nitrogen removal was achieved in AnMBR-PN/A system.

关键词: Anaerobic membrane bioreactor     Partial nitrification/Anammox     Carbon separation     Chemolitrophic nitrogen removal    

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1503-6

摘要:

H. venusta TJPU05 showed excellent HN-AD ability at high salinity.

关键词: Salt-tolerant bacteria     H. venusta TJPU05     Heterotrophic nitrification and aerobic denitrification     High-salinity wastewater    

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 177-186 doi: 10.15302/J-FASE-2021421

摘要:

A range of plant species produce root exudates that inhibit ammonia-oxidizing microorganisms. This biological nitrification inhibition (BNI) capacity can decrease N loss and increase N uptake from the rhizosphere. This study sought evidence for the existence and magnitude of BNI capacity in canola ( Brassica napus). Seedlings of three canola cultivars, Brachiaria humidicola(BNI positive) and wheat ( Triticum aestivum) were grown in a hydroponic system. Root exudates were collected and their inhibition of the ammonia oxidizing bacterium, Nitrosospira multiformis, was tested. Subsequent pot experiments were used to test the inhibition of native nitrifying communities in soil. Root exudates from canola significantly reduced nitrification rates of both N. multiformis cultures and native soil microbial communities. The level of nitrification inhibition across the three cultivars was similar to the well-studied high-BNI species B. humidicola. BNI capacity of canola may have implications for the N dynamics in farming systems and the N uptake efficiency of crops in rotational farming systems. By reducing nitrification rates canola crops may decrease N losses, increase plant N uptake and encourage microbial N immobilization and subsequently increase the pool of organic N that is available for mineralization during the following cereal crops.

关键词: ammonia oxidizing microorganisms / biological nitrification inhibition / farming rotations / nitrogen cycling / nitrogen use efficiency    

Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature

Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 937-944 doi: 10.1007/s11783-014-0668-7

摘要: Bioaugmentation is an effective method of treating municipal wastewater with high ammonia concentration in sequencing batch reactors (SBRs) at low temperature (10°C). The cold-adapted ammonia- and nitrite- oxidizing bacteria were enriched and inoculated, respectively, in the bioaugmentation systems. In synthetic wastewater treatment systems, the average -N removal efficiency in the bioaugmented system (85%) was much higher than that in the unbioaugmented system. The effluent -N concentration of the bioaugmented system was stably below 8 mg·L after 20 d operation. In municipal wastewater systems with bioaugmentation, the effluent -N concentration was below 8 mg·L after 15 d operation. The average -N removal efficiency in unbioaugmentation system (about 82%) was lower compared with that in the bioaugmentation system. By inoculating the cold-adapted nitrite-oxidizing bacteria (NOB) into the SBRs after 10 d operation, the nitrite concentration decreased rapidly, reducing the -N accumulation effectively at low temperature. The functional microorganisms were identified by PCR-DGGE, including uncultured sp., uncultured sp., sp. and uncultured sp. The results suggested that the cold-adapted microbial agent of ammonia-oxidizing bacteria (AOB) and NOB could accelerate the start-up and promote achieving the stable operation of the low-temperature SBRs for nitrification.

关键词: nitrification     sequencing batch reactors (SBRs)     bioaugmentation     low temperature    

Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional

Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 43-48 doi: 10.1007/s11783-012-0397-8

摘要: The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg (kg mixed liquor suspended solids (MLSS)·d) , and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg (kg MLSS·d) , showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing sp., in the conventional activated sludge system.

关键词: ammonia-oxidizing bacteria     hydraulic retention time     nitrification activity     nitrite-oxidizing bacteria     population dynamics    

Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater

LI Jun, GU Guowei, PENG Yongzhen, WEI Su

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 246-250 doi: 10.1007/s11783-007-0042-0

摘要: An aerobic sequencing batch biofilm reactor (SBBR) packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and denitrification. The SBBR is advantageous for creating an anoxic condition, and the biofilm can absorb and store carbon for good nitrification and denitrification. An average concentration of oxygen ranging from 0.8 to 4.0 mg/L was proved very efficient for nitrification and denitrification. Volumetric loads of TN dropped dramatically and effluent TN concentration increased quickly when the concentration of average dissolved oxygen was more than 4.0 mg/L. The efficiency of simultaneous nitrification and denitrification (SND) increased with increasing thickness of the biofilm. The influent concentration hardly affected the TN removal efficiency, but the effluent TN increased with increasing influent concentration. It is suggested that a subsequence for denitrification be added or influent amount be decreased to meet effluent quality requirements. At optimum operating parameters, the TN removal efficiency of 74% 82% could be achieved.

Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification

Xiaohui WANG, Xianghua WEN, Hengjing YAN, Kun DING, Man HU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 92-98 doi: 10.1007/s11783-010-0254-6

摘要: To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria (AOB) in a full-scale wastewater treatment plant, the AOB community dynamics in a wastewater treatment system was monitored over one year. The community dynamics were investigated using specific PCR followed by terminal restriction fragment length polymorphism (T-RFLP) analysis of the gene. The T-RFLP results indicated that during the period of nitrification stability, the AOB community structure in the full-scale wastewater treatment system was relatively stable, and the average change rate every 15 d of the system was 6.6%±5.8%. The phylogenetic analysis of the cloned gene showed clearly that the dominant AOB in the system was spp. The results of this study indicated that throughout the study period, the AOB community structure was relatively stable in the full-scale wastewater treatment system with functional stability of nitrification.

关键词: ammonia-oxidizing bacteria (AOB)     community dynamics     terminal restriction fragment length polymorphism (T-RFLP)     nitrification performance    

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 430-437 doi: 10.1007/s11783-010-0247-5

摘要: Nitrification occurs in chloraminated drinking water systems and is affected by water quality parameters. The aim of this study was to investigate the impact of total organic carbon and chlorine to ammonia ratio on nitrification potential in a simulated drinking water distribution system as during chloramination. The occurrence of nitrification and activity of nitrifying bacteria was primarily monitored using four rotating annular bioreactors (RAB) with different chlorine to ammonia ratios and total organic carbon (TOC) levels. The results indicated that nitrification occurred despite at a low influent concentration of ammonia, and a high concentration of nitrite nitrogen was detected in the effluent. The study illustrated that reactors 1(R1) and 3 (R3), with higher TOC levels, produced more nitrite nitrogen, which was consistent with the ammonia-oxidizing bacteria (AOB) counts, and was linked to a relatively more rapid decay of chloramines in comparison to their counterparts (R2 and R4). The AOB and HPC counts were correlated during the biofilm formation with the establishment of nitrification. Biofilm AOB abundance was also higher in the high TOC reactors compared with the low TOC reactors. The chlorine to ammonia ratio did not have a significant impact on the occurrence of nitrification. Bulk water with a high TOC level supported the occurrence of nitrification, and AOB development occurred at all examined chlorine to ammonia dose ratios (3∶1 or 5∶1).

关键词: nitrification     drinking water     ammonia- oxidizing bacteria (AOB)     chloramines     organic carbon     heterotrophic bacteria    

the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification

Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1272-7

摘要: Abstract • Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.

关键词: Landfill leachate     Process upgrade     Partial nitrification-denitrification     Bacterial community     Metagenomics    

Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel

Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1153-0

摘要: Novel carriers with favorable electrophilicity and hydrophilicity were prepared. Novel carriers had the capability of nitrification-enhancing. NH4+-N removal efficiency of IFFAS process rose up to 20% with novel carriers. Nitrosomonadales and Nitrospirales were identified as the functional nitrifiers. The population of Nitrospirales increased by 4.51%. The integrated floating fixed-film activated sludge (IFFAS) process is an ideal preference for nitrification attributing to the longer sludge age for nitrifiers. However, as the core of this process, conventional carriers made of polymer materials usually exhibit negative charge and hydrophobicity on the surface, which is unbeneficial to nitrifying biofilm formation. In this study, novel clinoptilolite composite carriers with favorable hydrophilicity, positive charge and nitrification-enhancing capability were made and implemented in IFFAS system. In comparison with conventional carriers, the novel clinoptilolite composite carriers displayed positive charges on the surface (11.7±1.1 mV, pH 7.0) with increased hydrophilicity (surface contact angle dropped to 76.7°). The novel-carriers-based reactors achieved significantly better NH4+-N removal efficiency at different influent concentrations, dissolved oxygen (DO) levels and shock loads (NH4+-N removal efficiency rose up to 20% comparing with the control reactors filled with polyethylene (PE) carriers or activated sludge). High-throughput sequencing (HTS) results indicated the novel clinoptilolite composite carriers provided favorable niche for more types of bacteria, especially for Nitrosomonadales and Nitrospirales (the functional nitrifiers in the system). The population of Nitrospirales increased by 4.51% by using novel clinoptilolite composite carriers comparing with using PE carriers, which ensured enhanced nitrification process. This study was expected to provide a practical option for enhancing wastewater nitrification performance with the novel clinoptilolite composite carrier.

关键词: Biofilm carrier     Clinoptilolite     Integrated floating fixed-film activated sludge (IFFAS)     Microbial community     Nitrification     Wastewater    

标题 作者 时间 类型 操作

REGIONAL ASSESSMENT OF SOIL NITROGEN MINERALIZATION IN DIVERSE CROPLAND OF A REPRESENTATIVE INTENSIVE AGRICULTURAL AREA

期刊论文

Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation

Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ

期刊论文

Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate

Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng

期刊论文

Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients

Alberto MANNUCCI,Giulio MUNZ,Gualtiero MORI,Claudio LUBELLO,Jan A. OLESZKIEWICZ

期刊论文

Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration

ZHANG Peng, ZHOU Qi

期刊论文

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification

期刊论文

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

期刊论文

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

期刊论文

Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature

Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN

期刊论文

Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional

Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA

期刊论文

Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater

LI Jun, GU Guowei, PENG Yongzhen, WEI Su

期刊论文

Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification

Xiaohui WANG, Xianghua WEN, Hengjing YAN, Kun DING, Man HU

期刊论文

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

期刊论文

the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification

Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng

期刊论文

Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel

Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang

期刊论文